遇到以上的问题,你会用什么方法解决呢?
If you encounter the above problems, what method will you use to solve them?
This article will teach readers a method that can be done quickly.
第一步:使用这个formula
In this question, treat f(x) as sin x, and g(x) as e^2x. If you want to reverse it, it is also possible, but this will be more complicated and error-prone.
所以,你的第一步应该会是:
So, your first step should be like:
第二步:同步进行两边,一边让要integrate的e^2x同元一边differentiate sin x
由于题目那边是e^2x,而我们原本的是dx,因此要让它们同元,就必须让他们变成d(2x),由于变成了d(2x),因此必须在下面除2来确保等式维持。
同时,differentiate后面的sin x,让他变成cos x。
Since the title is e^2x, and our original is dx, so to make them the same, we must make them into d(2x), and since they become d(2x), we must divide by 2 below to make sure the equality is maintained.
At the same time, differentiate the sin x behind to makes it cos x.
你的第二步会是:
Your second step should be like:
第三步:integrate
之所以在第一步选择要让e^2x来当g(x),就是因为如果用这种方法,g(x)会被integrate较多次,我们知道,sin x integration的时候会变成-cos x,如果没注意到就会导致答案错误,而e^2x则没有这种困扰,因此就可以放心integrate了。
The reason why e^2x is chosen to be g(x) in the first step is because if this method is used, g(x) will be integrated many times. We know that when sin x is integrated, it will become - cos x, if you don't notice it will lead to wrong answers, but e^2x doesn't have this kind of trouble, so you can rest assured to integrate.
你的第三步会是这样的:
Your third step should be like:
第四步:重复步骤1-3
做到这一步,你会发现,那条“虫”还在,根本integrate不掉啊!没关系,这时,暂时把前面的1/2sinx e^2x无视掉,对后面的部分再来一次前面三个步骤的动作,唯一要注意的就是原本题目那边是sin x,现在变成了 cos x,cos x在differentiate之后会变成-sin x,这个就要稍微留意了。
你的第四步会是这样的:
第五步:把等式右边的e^2x sin x dx扔去左边
做到这里,你会发现,嗯?题目里的e^2x sin x dx又被我弄回来了啊?!怎么处理?
没什么的,就把这个东东扔去左边就好。
你的第五步会是这样的(请自动无视掉右上角那堆):
最终答案(看下图):
这种方法适用于integrate 同时存在e和sin x或cos x的题目,是个非常快捷的方法。
读者可以尝试一下以下题目:
1)(e^3x cos x dx=?
2)(e^5x sin 2x dx=?
(请自动假设题目中的(是integrate的符号,blogger打不出来呀)
更多文章:https://myblog20012001.blogspot.com/2017/10/blog-post_24.html
Comments
Post a Comment